Existence and Uniqueness of Optimal Matrix Scalings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Uniqueness of Optimal Matrix Scalings

The problem of finding a diagonal similarity scaling to minimize the scaled singular value of a matrix arises frequently in robustness analysis of control systems. It is shown here that the set of optimal diagonal scalings is nonempty and bounded if and only if the matrix that is being scaled is irreducible. For an irreducible matrix, a sufficient condition is derived for the uniqueness of the ...

متن کامل

Existence and Uniqueness of Optimal Transport Maps

Let (X, d,m) be a proper, non-branching, metric measure space. We show existence and uniqueness of optimal transport maps for cost written as non-decreasing and strictly convex functions of the distance, provided (X, d,m) satisfies a new weak property concerning the behavior of m under the shrinking of sets to points, see Assumption 1. This in particular covers spaces satisfying the measure con...

متن کامل

Matrix Reenement Equations: Existence and Uniqueness

Matrix reenement equations are functional equations of the form f(x) = P N k=0 c k f(2x ? k), where the coeecients c k are matrices and f is a vector-valued function. Reenement equations play key roles in wavelet theory and approximation theory. Existence and uniqueness properties of scalar reenement equations (where the coeecients c k are scalars) are known. This paper considers analogous ques...

متن کامل

Existence, Uniqueness, and Regularity of Optimal Transport Maps

Adapting some techniques and ideas of McCann [8], we extend a recent result with Fathi [6] to yield existence and uniqueness of a unique transport map in very general situations, without any integrability assumption on the cost function. In particular this result applies for the optimal transportation problem on a n-dimensional non-compact manifold M with a cost function induced by a C2-Lagrang...

متن کامل

Existence and uniqueness of optimal maps on Alexandrov spaces

The purpose of this paper is to show that in a finite dimensional metric space with Alexandrov’s curvature bounded below, Monge’s transport problem for the quadratic cost admits a unique solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 1995

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479892235393